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ABSTRACT

Observing system simulation experiments (OSSEs) are used to simulate and assess the impacts of new

observing systems planned for the future or the impacts of adopting new techniques for exploiting data or for

forecasting. This study focuses on the impacts of satellite data on global numerical weather prediction (NWP)

systems. Since OSSEs are based on simulations of nature and observations, reliable results require that the

OSSE system be validated. This validation involves cycles of assessment and calibration of the individual

system components, as well as the complete system, with the end goal of reproducing the behavior of real-data

observing system experiments (OSEs). This study investigates the accuracy of the calibration of an OSSE

system—here, the Community Global OSSE Package (CGOP) system—before any explicit tuning has been

performed by performing an intercomparison of the OSSE summary assessment metrics (SAMs) with those

obtained from parallel real-data OSEs. Themain conclusion reached in this study is that, based on the SAMs,

the CGOP is able to reproduce aspects of the analysis and forecast performance of parallel OSEs despite the

simplifications employed in the OSSEs. This conclusion holds even when the SAMs are stratified by various

subsets (the tropics only, temperature only, etc.).

1. Introduction and study objectives

Observing system simulation experiments (OSSEs1)

allow ‘‘what if’’ experiments that quantify the expected

real-world impact of changes to observing systems—the

focus of this study—or changes to data assimilation

(DA) and forecast systems. OSSEs are based on simu-

lations of nature and observations, and compare results

from a control configuration and a test configuration.

The control configuration (usually) assimilates all cur-

rently available observations into a DA and forecast

system that is as close as possible to existing operational

practice. In the test configuration, either a new observing

system is added to the control configuration or the DA

and forecast system is modified relative to the control

configuration. By way of example and introduction: The

nature run (NR) of the OSSE system used here is a 2-yr-

long 7-km-resolution forecast of the Goddard Earth

Observing SystemModel, version 5 (GEOS-5). This NR

is commonly referred to as the GEOS-5 nature run

(G5NR) (Putman et al. 2015). The OSSE system—the

Community Global OSSE Package (CGOP) (Boukabara

et al. 2016b)—contains several components: First, the

CGOP interpolates the G5NR in time and space, and

applies observation operators for conventional, radiance,

and radio occultation (RO) observations (Boukabara

et al. 2018). Then, the CGOP includes a research version

of the NOAA global DA system (GDAS) that assimi-

lates these observations. A goal of the OSSE assimilation

step is to faithfully reproduce the effects of the quality
Corresponding author: Dr. Sid-AhmedBoukabara, sid.boukabara@
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control, data selection, and assimilation methodology.

Finally, the CGOP includes verification and visualization

tools to assess and interpret the impact results. Here,

we compare CGOP results to parallel real-data ob-

serving system experiments (OSEs) of Boukabara et al.

(2016a, hereafter BGK).

Results from OSSEs are used 1) to inform decision-

making processes designed to optimize global orbital

configurations, 2) in sensor design trade studies, 3) as a

test bed to prototype and implement new techniques, and

4) to increase readiness to exploit new observing systems

prior to their actual deployment. The design of an OSSE

should be tailored to the particular goals of the OSSE

(Hoffman and Atlas 2016). Ideally, the DA and forecast

systems used for the simulated-data OSSEs and the real-

data OSEs should be close to the operational system.

Since OSSEs are based on simulations of nature and

observations, reliable results require that the OSSE

system be validated. A validated system is capable of

reproducing the behavior of real-data OSEs. The vali-

dation process normally includes cycles of assessment and

calibration (i.e., tuning) of the individual system compo-

nents aswell as the complete system, by comparingOSSE

and OSE results. The first CGOP component to be vali-

dated was the simulation of error-free observations

(Boukabara et al. 2018), which have then been used in

subsequent OSSEs, including those reported here.

In the present study, we assess the calibration of the

entire CGOP before any explicit tuning has been per-

formed by conducting an OSSE–OSE intercomparison

in a parallel setting. This component of theOSSE system

validation examines to what extent the simulation-based

OSSE results agree with real-data OSE results, for

similar observing system configurations. We expect the

OSSE results—when examining assessment metric by

assessment metric with no normalization—to be better

than the OSE results for two reasons. First, the OSSE

forecast model in the CGOP is likely more similar to the

NR model than the OSE forecast model is to reality.

Second, and specific to the OSSEs used here, the ob-

servations are perfect observations without any added

explicit errors. Thus, such OSSE results are expected to

fail an absolute assessment; that is, primary assessment

metrics (PAMs) such as the 500-hPa geopotential

height anomaly correlation (AC) or the 250-hPa wind

RMSE are expected to be quite different in the OSSE

compared to the OSE. However, OSSE results may still

be useful for some purposes if the relative impacts are

reliable in the sense of being equivalent to the relative

impacts observed in the OSEs. Thus, if after appropriate

differencing, scaling, or normalization the adjusted

assessment metrics agree, then the OSSE results have

passed a relative assessment test. This may be sufficient

for assessing the impact of a degraded or improved

constellation of observing systems or the impact of

replacing sensors or satellites with alternative ones.

Some previous studies have sought to validate and

calibrate OSSEs (e.g., Errico et al. 2013; Privé et al.

2014). For validation, Hoffman and Atlas (2016) list the

following steps. First, deficiencies of the NR should be

assessed and documented. Any experiment using the

NR must examine whether the NR deficiencies would

conflict with the requirements of that experiment or

invalidate the assumptions of that experiment. Second,

the DA and forecast error statistics should be similar for

impact tests that can be conducted in both OSSE and

reality, such as those examined here. Two additional

recommended tests are performed to validate the pre-

dictability characteristics of the OSSE system compared

to reality and to compare OSSEs and OSEs at the start

of the NR before it diverges from reality.

Significant differences found in the validation may

require calibrating the OSSE system by adjusting the

simulated observation errors to better match relevant

statistics, usually statistics of the observation innova-

tions [observation minus background (O 2 B)] (e.g.,

Errico et al. 2013) or modifying some of the forecast

model parameterizations in the OSSE to better match

the forecast skill in reality (e.g., Casey et al. 2015). Un-

fortunately, tuning system parameters, which might be

the estimated observation error statistics used by the

assimilation or the ‘‘constants’’ appearing in the model

parameterizations of small-scale physical processes, for

the purpose of calibration may result in values that are

unphysical or inconsistent with prior knowledge. More-

over, operational DA systems commonly apply bias-

correction schemes (e.g., Dee and Uppala 2009) to the

observation innovations, which may interact with ad-

justment and tuning processes. A significant challenge to

traditional calibration is that focusing on an individual

primary assessment metric (PAM; i.e., a particular sta-

tistic for an given forecast time, domain, variable, and

level) may not help and may actually harm the degree of

agreement for other PAMs. This is one reason to consider

summary assessment metrics (SAMs) when validating

and calibrating an OSSE system. As an alternative to

tuning the OSSE system to match reality, OSSE results

can be directly calibrated to comparableOSE results. For

example,Hoffman et al. [1990, section 5c(2)] tunedOSSE

impacts by assuming OSE impacts are proportional to

OSSE impacts and determining that ratio from the par-

allel OSSE and OSE results for withholding satellite

observations.

The context and plan of this study are as follows: The

CGOP, including the simulation of and caveats related

to perfect observations, is described in section 2.
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This section also briefly describes thoseOSEs conducted

by BGK to explore the impact of reductions on satellite

observations that are used here as well as the parallel

OSSEs conducted for this study. The current study

continues the validation of the CGOP by comparing

OSSE and OSE SAMs. A focus on SAMs increases

statistical significance and avoids the problems of fo-

cusing on one particular PAM, as discussed above. Here,

SAMs are averages of normalized assessment metrics

(NAMs) and each NAM corresponds to a single PAM.

For example, the PAM for the 120-h 500-hPa geo-

potential height Northern Hemisphere (NH) forecast

AC valid 8 August 2006 for the control OSSE is converted

to the corresponding NAM using a normalization that is

based on a reference sample of the 120-h 500-hPa geo-

potential height NH forecast AC PAMs for all valid

verification times and experiments.2 While a first-order

validation might consider ‘‘global’’ SAMs that combine

all NAMs for each experiment, subsequent validation

might consider SAMs for various subsets or along dif-

ferent dimensions (e.g., for each forecast time or do-

main). Originally, in what we termed ‘‘overall’’ scores, a

minimum–maximum (minmax) normalization was used

(e.g., BGK). Later, we proposed the alternative use of an

empirical cumulative density function (ECDF) normali-

zation and applied it to theOSEs of BGK (Hoffman et al.

2017b) and to the 2015 skill scores from several global

NWP centers (Hoffman et al. 2017a).3 The minmax and

ECDF SAMs are described and contrasted in section 3.

Also in section 3, the effect of using the control analyses

(i.e., the analyses from the control experiments) for ver-

ification is investigated by comparison to using theNR for

verification for the OSSEs. Comparisons of OSSEs to

OSEs in section 4 first show 500-hPa AC and 250-hPa

wind RMSE as typical PAMs. As expected the OSSE

results for this idealized configuration of the CGOP are

superior. However, OSSE and OSE results appear to be

more similar in terms of scorecards of impact significance,

and in terms of maps and cross sections of errors4 after

these have been scaled by the domainwide magnitude of

the errors to account for the difference in the magnitudes

of the errors of theOSSEs andOSEs. ECDF andminmax

SAMs are then compared along several dimensions.

We find that focusing on SAMs represents a useful ap-

proach for validating idealizedOSSEs. Striking similarities

of the results between OSSE and OSE are found using

bothECDFandminmax SAMs. Finally, section 5 provides

a discussion and concluding remarks, including a discussion

of the relationship to absolute OSSE system calibration.

2. OSSE methodology

a. The CGOP

TheCGOP is an evolving package as described in detail

by Boukabara et al. (2016b). In brief the CGOP includes

the G5NR developed by NASA (Putman et al. 2015);

forward operators to simulate error-free observations—

including the Community Radiative Transfer Model

(CRTM; Chen et al. 2008; Ding et al. 2011) and the RO

observation simulator developed by NOAA (Cucurull

et al. 2013); an observation error addition procedure

developed by NASA (Errico et al. 2013); and a DA

system—the operational hybrid 3D- and 4D-ensemble

variational (3DEnVar and 4DEnVar, respectively)GDAS

developed by NOAA (Kleist and Ide 2015a,b).

TheG5NR is a global atmospheric 7-kmnonhydrostatic

forecast from 16 May 2005 until 16 June 2007, forced by

the observed sea surface temperature. NASA conducted

extensive validation of the G5NR in comparison to re-

ality (Gelaro et al. 2015). The G5NR is a very detailed

simulation, including representations of extreme weather

events (e.g., Reale et al. 2017). However, there are sig-

nificant differences compared to reality as documented

byGelaro et al. (2015) and some thatmay be important in

the OSSE context are listed by Boukabara et al. (2018).

For example, because of diffusion added for compu-

tational stability, the effective resolution (Skamarock

2004) of the G5NR should be considered as several

times coarser than its 7-km grid spacing (Gelaro et al.

2015, section 2.2).

The observation operators, described in brief by

Boukabara et al. (2018), are the same for simulating

observations for the OSSE and within the GDAS with

exceptions noted in what follows. The microwave and

infrared brightness temperatures (BTs) are simulated

using the CRTM (Chen et al. 2008; Ding et al. 2011) and

RO refractivities, and bending angles are simulated fol-

lowing Cucurull et al. (2013). Although these same

observation operators are used in simulating observa-

tions from the G5NR and within the DA system, the

preliminary spatial and temporal interpolation to the

observation locations is not identical, since the spatial

grids and time archiving are different. In general, but not

in the present idealized study, errors are tuned and ex-

plicitly added to the simulated perfect observations

following the method of Errico et al. (2013).

2 Other SAMs, such as the NWP index of Rawlins et al. (2007),

use skill scores to normalize PAMs and weighted averages to

define SAMs.
3 A new study by Hoffman et al. (2018) explores this topic in

more detail.
4 Here, what is termed error is really an approximate error, since

forecasts are compared to analyses that are imperfect. Only in

those results where the OSSEs are verified against the NR are the

‘‘errors’’ true, not approximate errors.
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The CGOP includes the NOAA GDAS and fore-

cast systems—the operational hybrid 3DEnVar and

4DEnVar GDAS with 80 ensemble members (Kleist

and Ide 2015a,b). The current operational GDAS

configuration (see NWS 2014) uses a 64-layer sigma–

pressure hybrid coordinate, T1534 resolution for

the deterministic forecast, T574 resolution for the

80-member forecast ensemble, and T574 resolution for

the 4DEnVar analysis. The research version uses the

same 64 vertical layers, but T670 resolution for the de-

terministic forecast and T254 resolution for the forecast

ensemble used in the 3DEnVar or 4DEnVar. Note that

the resolution of these components is given in terms

of their spectral truncation. For example, T574 means

triangular truncation at total wavenumber 574. See

Table 3 in Boukabara et al. (2016b) for conversions to

kilometers.

b. Experiment setup

Results shown below (sections 3 and 4) are for three of

the four OSEs described by BGK and for three parallel

OSSEs. These experiments examine two plausible fu-

ture data configurations in the global observing system

(GOS) that would result in data gaps, and BGKquantify

the impacts of these changes in GOS configuration on

the skill of the January 2015 NOAAGDAS, which then

included the hybrid 3DEnVar. Of the four experiments

conducted by BGK, the three experiments considered

here are as follows:

d cntrl-OSE: All observing systems used in the January

2015 operational implementation are included in the

control configuration in this best-case experiment.
d 3polar-OSE: This experiment reduces satellite obser-

vation coverage to the 3-Polar configuration in which

all secondary and backup polar satellites are elimi-

nated, thereby retaining only one satellite in each of

the early morning, midmorning, and evening orbits.
d 2polar-OSE: This experiment further reduces satellite

observation coverage to the 2-Polar configuration,

which is the same as the 3-Polar configuration but

without the evening platform.

Each experiment covered the period 25 May–7 August

2014, but only the 32-day period of 7 July–7 August 2014

was used for intercomparison purposes. Forecasts were

made each day at 0000 UTC for 168 h (7 days). (For the

purpose of this paper, we have added the ‘‘OSE’’ suffix

to the experiment names of BGK.)

In summary, usingminmax SAMs, BGK (p. 2547) finds

that ‘‘removing secondary satellites results in significant

degradation of the forecast. Second, losing the afternoon

orbit on top of losing secondary satellites further de-

grades forecast performances by a significant margin.’’

These findings are consistent with the results pre-

sented here using a new assessment metric, that is,

using ECDF SAMs.

For intercomparison, parallel OSSEs were conduct-

ed. These experiments are similarly named, but with

‘‘OSSE’’ as a suffix—cntrl-OSSE, 3polar-OSSE, and

2polar-OSSE. In what follows, the cntrl-, 3polar- and

2polar-OSSEs and OSEs will be referred to in pairs as

the Control, 3-Polar, and 2-Polar experiments. The

32-day OSSE period, 15 August–15 September 2006,

follows a 7-day spinup period, 8–15 August 2006. The

OSSEs were run using the research version of the

GDAS. To minimize configuration differences between

the OSEs of BGK and the parallel OSSEs, 1) the GDAS

uses 3DEnVar in this study and 2) data in the OSSE are

simulated tomatch the actual 2014 observation locations

and times (i.e., themonths, days, and times of day shifted

to 2006). Thus, the OSSEs and OSEs are identical in

experimental procedures with the following exceptions.

First, the OSSE resolutions are T670 and T254 and the

OSE resolutions are T1534 and T574. Second, there are

differences in the data sampling because of the differ-

ence in time of year. While the exact locations of ob-

servations were different during 7 July–7 August 2014

and during 15 August–15 September 2014, the approx-

imate numbers and coverage for each data type were

the same.

3. SAM methodology

Various assessment metrics can be compared between

OSSEs and OSEs to establish the degree of similarity

between the OSSE and reality. In what follows, the focus

is on the behavior of SAMs for the three OSEs and the

three parallel OSSEs described in section 2b. For the

SAMs presented in what follows, along each PAM di-

mension (e.g., variable) there are a number of discrete

coordinate values (geopotential height, temperature, etc.)

that are listed here in ‘‘dimension: coordinate values’’

format:

1) forecast time: 0, 24, 48, 72, 96, 120, 144, 168 h;

2) level: 250, 500, 700, 850, 1000hPa;

3) domain: Northern Hemisphere extratropics (NHX),

Southern Hemisphere extratropics (SHX), tropics;

4) variable: geopotential height Z, temperature T,

vector wind V, relative humidity (RH);

5) statistic: anomaly correlation (AC), root-mean-

square error (RMSE), absolute mean error (AME);

6) verification time: the 32 OSSE or OSE verification

times, which occur every 24h at 0000 UTC; and

7) experiment: {cntrl-OSSE, 3polar-OSSE, 2polar-

OSSE} or {cntrl-OSE, 3polar-OSE, 2polar-OSE}.
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The PAMs are calculated with respect to the corre-

sponding Control analysis—either cntrl-OSSE or cntrl-

OSE—and the SAMs are calculated using the ECDF

normalization. Note that for the vector wind PAMs,

ordinary multiplications are replaced with dot products

in the definitions of the statistical quantities. Alterna-

tives to these approaches—using the minmax normali-

zation and verifying against theNR—are discussed here,

and some results using these alternatives are presented

and/or discussed. The available OSE PAMs for both

RMSE and AME are complete, including all possible

46 080 combinations of coordinates. Some of the possi-

ble AC PAMs are not calculated in keeping with stan-

dard practice. As a result there are no RH AC PAMs,

and ACs are missing for 850-hPa geopotential height, and

for 700- and 1000-hPa temperature and wind, leaving a

total of 23040 OSE AC PAMs. For the OSSEs, for the

first few days there are missing values, since the forecasts

start with the first verification day (e.g., there is no 3-day

forecast present at day 2 of the OSSEs), leaving a total of

41040 RMSE and AME PAMs, and 20520 AC PAMs.

In prior research, we have calculated SAMs using

both ECDF and minmax normalizations (Hoffman

FIG. 1. Stacked histograms for (a),(b)OSSEs and (c),(d)OSEs of (left) ECDFNAMs and (right)minmaxNAMs.

The total number of NAMs (and of PAMs) is 102 600 for theOSSEs and 115 200 for theOSEs. The distributions are

strikingly similar for both ECDF and minmax normalizations.

FIG. 2. Boxplots of PAMs for 500-hPa geopotential height AC at

forecast time 0 (mint), 24 (ochre), and 48 h (lavender) for theOSSEs

using both Control-verification (cntrl) and NR-verification (G5NR).
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et al. (2017b; BGK). In both cases the normalization

is specific to each PAM subset, that is, each individual

forecast time, level, domain, variable, and statistic

(e.g., all the 120-h 500-hPa geopotential height NHX

forecast ACs). For each PAM subset, the reference

sampleR includes the PAMs for all verification times

and all experiments in either all OSSEs or all OSEs.

In the present case, there are 1440 PAM subsets

(eight forecast times, five levels, three domains, four

variables, and three statistics), and the maximum

reference sample size is 96 (32 verification times and

three experiments). For a PAM like AC, where in-

creasing values are better, the ECDF normalization is

given by

NAM5
Rank(PAM inR)2 1

Size(R)
, (1)

and the minmax normalization is given by

NAM5
PAM2min(R)

max(R)2min(R)
. (2)

In both formulations NAMs are in the range [0, 1],

with 0 being worst and 1 best. For a PAM like RMSE,

where increasing values are worse, Eqs. (1) and (2) are

applied to the negative of the PAM values.

In general, the ECDF normalization may be pre-

ferred because of its robustness and well-behaved

known distribution, while the minmax normalization

may be preferred because of its simple implementation.

In practice, some artifacts occur when using either nor-

malization. Figure 1 shows that the shape of the ECDF

and minmax distributions are quite different.5 Consider

the 2polar-OSSE experiments. The ECDF distribution

decreases approximately linearly with NAM value,

while the minmax distribution is quasi-Gaussian plus a

constant. The distributions for OSSEs and OSEs are

very similar—a much stronger statement than that the

means of the distributions are similar. Under the con-

ditions of this experiment, the OSSE results even for

perfect observations are consistent with the real-data

OSE results. By construction the combined (stacked)

histogram using ECDF must be uniform. This is not the

case for the minmax normalization, where there is a

well-defined mode centered on 0.65. This distribution is

asymmetric and is consistent with the fact that there are

occasional forecast busts so that the minimum will be

FIG. 3. Effect of Control- vs NR-verification on (a) global SAMs and (b) SAMs as a function of forecast time

using ECDF normalization for the OSSEs. Note that in this and subsequent plots of SAM, confidence intervals are

plotted at the 95% level, gray shading indicates the 95% null hypothesis (H0) confidence interval, and the y axis

ranges from 0.3 to 0.7, or from 0.1 to 0.9 in cases when the x axis is forecast time.

5 Colors in this and other figures are from the Dark2 color-blind

safe palette of ColorBrewer—mint, ochre, lavender, magenta,

lime, gold, and brown. Many of the following figures use the colors

scheme of Fig. 1 to indicate the different OSSEs and OSEs.
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more extreme than the maximum. The accumulation of

NAMs at 0 and 1 using the minmax normalization is an

artifact of the minmax calculation—there must be one

occurrence of 0 and one occurrence of 1 for each of the

1440 subsets (i.e., for each R). The ECDF NAM values

are quantized (from 0 to 95, divided by 95). In the his-

tograms plotted, each bin includes exactly three of these

quantized values. For the OSEs there are no missing

values and small deviations from flatness are due to ties

in the ranks. Since there are missing values at the start of

the OSSEs, small-amplitude random noise was added

to the OSSE NAM values to stabilize this histogram

(Fig. 1a). For the minmax normalization, since the

values are not quantized, there is no need to stabilize the

histograms and the histograms are relatively insensitive

to the choice of binning.

The OSSE assessment metrics may be calculated with

verification from the Control experiment of the NR

(Control- or NR-verification). This has a large effect at

the initial (0 h) forecast time but a decreasing effect

thereafter. This is clearly seen in Figs. 2 and 3. Figure 2

show the effect of Control- versus NR-verification at the

start of the forecast, zooming in on just the 0-, 24-, and

48-h 500-hPa NHX geopotential height AC. At 0 h, the

Control experiments verified against the corresponding

Control analyses are nearly perfect, since the Control

0-h forecast is a one-time-step forecast from the analysis.

For all cases, at 0 h, the verification against cntrl-OSSE

is slightly better than against the G5NR, but the reverse

is true at 24 and 48 h.

Hoffman et al. (2017b) found that the global SAM

(i.e., the average of all NAMs) is a useful summary of

skill and that there is a decay of impact with forecast

time. In the context of SAMs the impact is the difference

between the calculated SAM and its expected value

under the null hypothesis that there is no effect as a

result of the experiment. Thus, ECDF SAM values of

0.75 and 0.25 would represent very large positive and

negative impacts, respectively, since the expected value

under a null hypothesisH0 is 0.5. Figure 3 examines how

the choice of verification affects the key SAM charac-

teristics. In Fig. 3a the global SAMs are compared for

the OSSEs for ECDF normalization, for both Control-

and NR-verification. Figure 3 and subsequent figures

identify SAM results for the OSSEs verified against the

G5NR as cntrl-v-NR, 3polar-v-NR, and 2polar-v-NR,

whereas all SAM results verified against the Control

analyses are simply identified by the experiment name.

For reasons best understood in terms of Fig. 3b, the

impacts are somewhat smaller using the NR as verifi-

cation. In Fig. 3b the SAMs are plotted versus forecast

time. The effect of using Control-verification is to in-

crease Control skill at 0 h. This effect decays with fore-

cast time and is near zero by 72 h. In the ECDF case, the

FIG. 4. Plots of (a) AC of 500-hPa geopotential height in the NHX and (b) RMSE of 250-hPa wind in the tropics vs

forecast time. ThePAMs are plotted for each cntrl-OSSE forecast in gray under the average curves. (c),(d)Differences

with respect to each Control experiment and 95% significance intervals (boxes) for the null hypotheses.
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effect of verification on cntrl-OSSEmust be offset by the

sum of the effects on the other experiments. For the

present experiments, all of this effect is distributed to

2polar-OSSE and there is little effect on 3polar-OSSE.

Since there is no absolute truth for the OSEs, for con-

sistency in those plots that compare OSSE and OSE

results, assessment metrics will be calculated with

Control-verification.

4. OSSE–OSE intercomparison results

a. PAMs

Examples of standard ‘‘loss of predictability’’ curves

for PAMs using Control-verification are shown in Fig. 4.

The perfect-observations OSSEs have higher pre-

dictability than the real-dataOSEs as expected. For cntrl-

OSSE, theOSSEACreach 0.8 at 168h,while theOSEAC

reach 0.8 at about 130h. The impact of the 2-Polar con-

figuration compared to Control is much greater and more

significant in the OSE than in the OSSE setting. The un-

derlying plume plot in Fig. 4a shows each of the cntrl-

OSSE AC curves. Clearly there is substantial variability

hidden in each average curve and that variability grows

with forecast time. The RMSE plot shows similar be-

havior. However, here it is easy to see that at 0 h the

Control experiments are nearly perfect and much bet-

ter than the other experiments as a result of using the

Control analyses for verification (as mentioned earlier,

these are not exactly perfect because of small differ-

ences between the Control analyses and 0-h forecasts,

which are one-time-step forecasts from the analysis).

Beyond 48 h, the wind forecast errors grow nearly lin-

early with time through the end of the 7-day forecast.

Note that the later forecast time OSSE results are ap-

proximately 1 day better (e.g., the 5-day OSSE scores

are as good as the 4-day OSE scores).

The curves in the bottom (difference) panels in Fig. 4

agree somewhat better than in the top panels, but there

are noticeable differences. All the data gap experiments

result in poorer forecast scores, but for the geopotential

height AC, 2polar-OSE is definitely worse than 2polar-

OSSE. For the wind RMSE, all the results are similar

except at 24 and 48h, where the OSSE forecasts have

larger impacts. The 95%-significance-level uncertainties

support the robustness of these results. Note that in

Fig. 4c, 2polar-OSSE is slightly better than 3polar-OSSE.

FIG. 5. Scorecards for the 3-Polar experiments compared to the Control experiments for the (left) OSSEs and

(right) OSEs. Only the RMSE portions of the standard NOAA Environmental Modeling Center verification

scorecards are shown. The symbols and colors indicate the probability that the 3-Polar experiment is better than the

Control experiment. As shown below the scorecard, the green symbols indicate that the 3-Polar experiment is

better than the Control experiment at the 95% (squares), 99% (small up-pointing triangle), and 99.9% (large

up-pointing triangle) significance levels, while the red symbols indicate that the 3-Polar experiment is worse than

the Control experiment at the 95% (squares), 99% (small down-pointing triangle), and 99.9% (large down-pointing

triangle) significance levels. Gray indicates no statistically significant differences.

2068 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 35



Such nonintuitive results within the estimated uncer-

tainty bounds are common when examining individual

PAMs. This is one motivation to use SAMs.

In figures like Fig. 4 only a small fraction of the PAMs

can be displayed. Therefore, it is common to collec-

tively visualize many impacts in a scorecard, as in Fig. 5,

which compares the 3-Polar experiments to the Control

experiments. There is substantial agreement between

OSSE and OSE in terms of which impacts of the 3-Polar

configuration are significantly negative and positive and

to what degree of significance. Note that in both the

OSSE and OSE, the 3-Polar configuration generally

FIG. 6. Maps of 72-h 250-hPa wind-forecast-error-scaled standard deviation for (a) the

3polar-OSSE, (b) the 3polar-OSE, and (c) the difference (OSSE minus OSE). The standard

deviation is over all forecasts, and the scales are the RMS of the OSSE standard deviations

(4.46m s21) and the RMS of the OSE standard deviations (5.51m s21).
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degrades forecast skill, but not for geopotential height

and some temperatures in the extratropical stratosphere

(as with the uncertainty boxes in the bottom panels in

Fig. 4, each symbol in Fig. 5 corresponds to an individual

two-sided paired Student’s t test).

The results presented so far in this section are for sta-

tistics computed over large domains, but such visualiza-

tions hide the substantial spatial variation. Figure 6 shows

maps of the 72-h 250-hPa scaled standard deviation of the

wind forecast error for 3polar-OSSE (top) and 3polar-

OSE (middle). Since the overall magnitude of the errors

is considerably smaller in the OSSE, scaling both the

OSSE andOSEmaps by their RMS values helps to assess

to what extent the patterns of errors agree. The overall

patterns in Figs. 6a and 6b agree fairly well on the large

scale, but there aremany small-scale differences (Fig. 6c).

This might be expected, since the individual daily error

maps that are averaged are dominated by errors on the

synoptic scale, and the OSSE and OSE synoptic features

do not match. Note that the wind errors tend to be largest

where the winds are strongest (608N/S) and smallest

where the winds are weakest (the Middle East).

Visualizations like Fig. 6 show only one level and one

forecast time, so vertical cross sections are used to

examine other features of the F7 forecast errors.

Figure 7 displays cross sections of 120-h geopotential

height zonal-mean scaled forecast error standard de-

viation for 3polar-OSSE (Fig. 7a) and 3polar-OSE

(Fig. 7b). The largest errors are in the jet stream regions,

where there can be mislocations of the traveling

synoptic-scale waves. The patterns of the scaled errors in

the OSSE and OSE agree fairly well. Again, the scale of

the errors is considerably smaller in the OSSE, with the

OSSE RMS standard deviation equal to 82% of the

OSE value.

Similar conclusions are drawn from examining maps

like those in Fig. 6 for different levels, variables, and

forecast lengths, and cross sections like those in Fig. 7

for different variables and forecast lengths. Generally,

the largest differences occur where the scaled errors

are largest (e.g., Fig. 7c between 608 and 908S), and the

scaled errors tend to be largest in the extratropics and

near the tropopause.

The findings of this section that simple differencing

or scaling transformations reveal similarities in the

OSSE and OSE results motivate the use of SAMs for

assessing the OSSE system calibration and validation.

b. SAMs

As noted earlier, Hoffman et al. (2017b) found that

the key SAM characteristics for data impact experi-

ments are that global SAMs are a useful summary of

skill and that there is a clear decay of impact with

forecast time. For the OSSE–OSE intercomparison,

Fig. 8a plots the global SAMs, that is, NAMs averaged

over all dimensions—statistic, forecast time, variable,

level, and domain. As an aid to visualization, the

OSSE and OSE results are plotted pairwise by ob-

serving configuration (this figure is in the same format

as Fig. 3, but with the OSE results replacing the NR-

verification OSSE results). There is very good agree-

ment between OSSE and OSE global SAMs—in fact,

much better than the comparison between Control- and

NR-verification OSSE results seen in Fig. 3a.

In data impact experiments, SAMs vary greatly with

forecast time. Figure 8b shows the quasi-exponential decay

of impact with forecast time for these experiments.

FIG. 7. Cross sections of 120-h geopotential height zonal-mean

forecast-error-scaled standard deviation for (a) the 3polar-OSSE,

(b) the 3polar-OSE, and (c) the difference (OSSE minus OSE).

The standard deviation is over all longitudes and then averaged

over all forecasts, and the scales are the RMS of the OSSE

standard deviations (31.5 m) and the RMS of the OSE standard

deviations (38.2 m).
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At longer forecast times, the negative impact of the

2polar-OSSE (lavender filled circle) is smaller than

that of the 2polar-OSE (magenta open circle), but for

both 3polar-OSSE (lime filled triangle) and 3polar-

OSE (mint open triangle) the impacts are nearly

neutral, although of opposite sign. This strong similarity

between OSSE and OSE SAMs is confirmed as well

using the minmax normalization. Generally similar re-

sults are found for global SAMs using the minmax

normalization (Fig. 8c). The general variations with

forecast time are similar, but the negative impact seen

in 2polar-OSSE is not noticeably reduced in magnitude

compared to 2polar-OSE, and at 0 h there are larger

impacts for the Control and 3-Polar experiments

(Fig. 8d).

Figure 9 shows how SAMs vary along the dimen-

sions of domain, variable, level, and statistic. Across

all categories the OSSE and OSE impacts are very

FIG. 8. (a) Global ECDF SAMs and (b) ECDF SAMs as a function of forecast time for OSSEs andOSEs. (c),(d) As

in (a) and (b), respectively, but showing the minmax SAM results.
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similar for the Control experiments, 2polar-OSSE

tends to have smaller negative impacts than 2polar-

OSE, and the 3polar-OSSE impacts are generally small

and negative, while the 3polar-OSE impacts are mostly

neutral. Notably, impacts for wind and RH are larger

than for geopotential height and temperature, and impacts

for AME are much smaller than for AC and RMSE.

The OSSE and OSE SAM impacts for geopotential

height now agree unlike the PAM impacts shown in

Fig. 4. The striking similarity of these plots suggests that

for SAMs, the OSSE results are consistent with the OSE

results. Here also, the strong similarity between OSSE

FIG. 9. ECDF SAMs for OSSEs and OSEs by (a) level (hPa), (b) domain, (c) variable, and (d) statistic.
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and OSE SAMs is found using the minmax normaliza-

tion. Conclusions from ECDF andminmax normalization

are similar (Fig. 10), except that ECDF suggests a stronger

similarity for some categories, including for the NH

domain, and for geopotential height. (The results in Fig. 10d

appear somewhat inconsistent because of the use of a

single baseline for the bar plot. The mean value of the

minmax NAMs actually varies noticeably between

AC, RMSE, and AME.) Comparing the OSSE impacts

for Control- and NR-verification (Fig. 11), the impacts

are generally reduced using NR-verification (everything

is closer to 0.5) as expected from the discussion in

FIG. 10. Minmax SAMs for OSSEs and OSEs for (a) level (hPa), (b) domain, (c) variable, and (d) statistic.

OCTOBER 2018 BOUKABARA ET AL . 2073



section 3. But the NR-verification impacts are even

more reduced in certain categories, including RH

compared to other variables and at the highest and

lowest levels (250 and 1000hPa, respectively) compared

to midlevels. This indicates that in these categories the

Control analysis is less reliable and that it might make

more sense to verify the OSSEs against the NR and the

OSEs against the operational consensus analysis as has

been done in previous OSSEs (e.g., Atlas 1997; Atlas

et al. 1985a,b, 2001, 2015a,b).

FIG. 11. ECDF SAMs for OSSEs for Control- and NR-verification for (a) level (hPa), (b) domain, (c) variable, and

(d) statistic.
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Further decomposition of SAMs by forecast time

and other dimensions shows generally similar patterns

in the OSSE and OSE results (Fig. 12). Essentially the

interaction of forecast time and the other dimensions

(of domain, variable, level, and statistic) are weak and

these decompositions are cross products of Fig. 8b

and the individual panels of Fig. 9. One notable varia-

tion (Fig. 12c) is that relative to the other variables, the

cntrl-OSE geopotential height impacts are reduced in

magnitude at 24 and 48h.

FIG. 12. ECDF SAMs for OSSEs and OSEs as functions of forecast time by (a) level (hPa), (b) domain,

(c) variable, and (d) statistic.
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5. Discussion and concluding remarks

OSSEs must be realistic and reliable to accurately

predict the impact of future observing systems or

changes toDA systems, and to support decision-making.

The relevance of any OSSE results to specific conclu-

sions must be considered in light of the deficiencies of

the particular OSSE system that was used. In an ideal

situation, the OSSE system uses the operational DA

system, and the OSSE is validated by showing that the

OSSE impacts accurately reflect the OSE impacts for

experiments that can be executed in parallel, as well as

the absolute accuracies of analyses and forecasts. Often,

however, the validation assessment in terms of PAMs

tends to suggest the need to calibrate or tune the OSSE

system or to calibrate the conclusions of the experiment

based on the limitations of theOSSE system that is used.

Calibration of the OSSE system might include adjusting

the simulated observation error characteristics (Errico

et al. 2013; Privé et al. 2014) or modifying some pa-

rameters in the forecast model to affect its predictability

characteristics. However, using single metrics of single

parameters for the calibration assessment is challenging

(i.e., no OSSE calibration to date has been found to be

able to reproduce real-data performance for every single

metric of every single parameter). A posteriori calibra-

tion of the results determines adjustments that make the

parallel OSSEs and OSEs similar and then applies the

same adjustments to the other OSSEs.

This present study suggests a method of assessing the

OSSE system calibration based on an OSSE–OSE in-

tercomparison of SAMs. This study focused on the val-

idation of the OSSE impacts of potential data gaps on

global operational NWP using the CGOP. The results

indicate that this OSSE system even without calibration

or tuning can be useful in evaluating at least one of the

important questions typically addressed in an OSSE—

specifically that of determining the relative impact of

observing systems. Ongoing work is underway to repeat

the OSSEs with realistic added observation errors (fol-

lowing Errico et al. 2013). The present study is also

limited to experiments for the impacts of groups of

sensors; in the future, additional experiments similar to

those described here could be conducted examining the

impacts of individual sensors.

OSSEs with perfect observations cannot by definition

explore the impact of varying observation error magni-

tudes and correlations. This constitutes a limitation to

the application of such idealized OSSEs. It is however

worth noting that tuning observation errors has its own

challenges as described earlier. Furthermore, when

assessing new sensors, real error characteristics are often

unknown and therefore any attempt to adjust errors of

future sensors may run the risk of underestimating or

overestimating their actual values. It is important that

baseline sensor-simulated observations and new

sensor-simulated observations be treated consis-

tently. While acknowledging the aforementioned

limitations, it should also be noted that OSSEs with

perfect observations can be used, similar to how the

ensemble of DA approach (e.g., Harnisch et al. 2013)

has been used, to investigate the impact of the distri-

bution of observations and what parameters are ob-

served at those locations. An appropriate validation for

perfect observation OSSEs is then to show that the

OSSE impacts agree with the OSE impacts across

variables and locations in a relative or normalized

sense; that is, some characteristics of the impacts

should be similar, and simple transformations (dif-

ferencing, scaling, normalizing) can provide a first

step in validation and calibration.
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APPENDIX

Acronyms

Acronyms used in the text are listed here. Common

acronyms (e.g., UTC and RMSE) and proper names

(e.g., names of specific institutions such as NASA) are

not expanded in the text.

3DEnVar 3D-ensemble variational

4DEnVar 4D-ensemble variational

AC Anomaly correlation

AME Absolute mean error

BGK Boukabara et al. (2016a)

BT Brightness temperature
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CGOP Community Global OSSE Package

CICS Cooperative Institute for Climate and

Satellites (College Park, Maryland)

CIMAS Cooperative Institute for Marine and

Atmospheric Studies (Miami, Florida)

CIRA Cooperative Institute for Research in the

Atmosphere (Fort Collins, Colorado)

CRTM Community Radiative Transfer Model

DA Data assimilation

ECDF Empirical cumulative density function

G5NR GEOS-5 nature run [GMAO7-km (1/168 3
1/168)-resolution NR]

GDAS Global DA system

GEOS-5 Goddard Earth Observing System Model,

version 5 (NASA)

GMAO Global Modeling and Assimilation Office

GOS Global observing system

H0 Null hypothesis

NAM Normalized assessment metric

NASA National Aeronautics and Space

Administration

NESDIS National Environmental Satellite, Data,

and Information Service

NH Northern Hemisphere

NHX Northern Hemisphere extratropics

NOAA National Oceanic and Atmospheric

Administration

NR Nature run

NWP Numerical weather prediction

OPPA Office of Projects, Planning, and Analysis

OSAAP Office of Systems Architecture and Advance

Planning

OSE Observing system experiments

OSSE Observing system simulation experiment

PAM Primary assessment metrics

RH Relative humidity

RMSE Root-mean-square error

RO Radio occultation

SAM Summary assessment metric

SHX Southern Hemisphere extratropics

UTC Coordinated universal time
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